1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
use std::io::{self, Result};
use ByteOrder;
/// Extends `Read` with methods for reading numbers. (For `std::io`.)
///
/// Most of the methods defined here have an unconstrained type parameter that
/// must be explicitly instantiated. Typically, it is instantiated with either
/// the `BigEndian` or `LittleEndian` types defined in this crate.
///
/// # Examples
///
/// Read unsigned 16 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![2, 5, 3, 0]);
/// assert_eq!(517, rdr.read_u16::<BigEndian>().unwrap());
/// assert_eq!(768, rdr.read_u16::<BigEndian>().unwrap());
/// ```
pub trait ReadBytesExt: io::Read {
/// Reads an unsigned 8 bit integer from the underlying reader.
///
/// Note that since this reads a single byte, no byte order conversions
/// are used. It is included for completeness.
#[inline]
fn read_u8(&mut self) -> Result<u8> {
let mut buf = [0; 1];
try!(self.read_exact(&mut buf));
Ok(buf[0])
}
/// Reads a signed 8 bit integer from the underlying reader.
///
/// Note that since this reads a single byte, no byte order conversions
/// are used. It is included for completeness.
#[inline]
fn read_i8(&mut self) -> Result<i8> {
let mut buf = [0; 1];
try!(self.read_exact(&mut buf));
Ok(buf[0] as i8)
}
/// Reads an unsigned 16 bit integer from the underlying reader.
#[inline]
fn read_u16<T: ByteOrder>(&mut self) -> Result<u16> {
let mut buf = [0; 2];
try!(self.read_exact(&mut buf));
Ok(T::read_u16(&buf))
}
/// Reads a signed 16 bit integer from the underlying reader.
#[inline]
fn read_i16<T: ByteOrder>(&mut self) -> Result<i16> {
let mut buf = [0; 2];
try!(self.read_exact(&mut buf));
Ok(T::read_i16(&buf))
}
/// Reads an unsigned 32 bit integer from the underlying reader.
#[inline]
fn read_u32<T: ByteOrder>(&mut self) -> Result<u32> {
let mut buf = [0; 4];
try!(self.read_exact(&mut buf));
Ok(T::read_u32(&buf))
}
/// Reads a signed 32 bit integer from the underlying reader.
#[inline]
fn read_i32<T: ByteOrder>(&mut self) -> Result<i32> {
let mut buf = [0; 4];
try!(self.read_exact(&mut buf));
Ok(T::read_i32(&buf))
}
/// Reads an unsigned 64 bit integer from the underlying reader.
#[inline]
fn read_u64<T: ByteOrder>(&mut self) -> Result<u64> {
let mut buf = [0; 8];
try!(self.read_exact(&mut buf));
Ok(T::read_u64(&buf))
}
/// Reads a signed 64 bit integer from the underlying reader.
#[inline]
fn read_i64<T: ByteOrder>(&mut self) -> Result<i64> {
let mut buf = [0; 8];
try!(self.read_exact(&mut buf));
Ok(T::read_i64(&buf))
}
/// Reads an unsigned n-bytes integer from the underlying reader.
#[inline]
fn read_uint<T: ByteOrder>(&mut self, nbytes: usize) -> Result<u64> {
let mut buf = [0; 8];
try!(self.read_exact(&mut buf[..nbytes]));
Ok(T::read_uint(&buf[..nbytes], nbytes))
}
/// Reads a signed n-bytes integer from the underlying reader.
#[inline]
fn read_int<T: ByteOrder>(&mut self, nbytes: usize) -> Result<i64> {
let mut buf = [0; 8];
try!(self.read_exact(&mut buf[..nbytes]));
Ok(T::read_int(&buf[..nbytes], nbytes))
}
/// Reads a IEEE754 single-precision (4 bytes) floating point number from
/// the underlying reader.
#[inline]
fn read_f32<T: ByteOrder>(&mut self) -> Result<f32> {
let mut buf = [0; 4];
try!(self.read_exact(&mut buf));
Ok(T::read_f32(&buf))
}
/// Reads a IEEE754 double-precision (8 bytes) floating point number from
/// the underlying reader.
#[inline]
fn read_f64<T: ByteOrder>(&mut self) -> Result<f64> {
let mut buf = [0; 8];
try!(self.read_exact(&mut buf));
Ok(T::read_f64(&buf))
}
}
/// All types that implement `Read` get methods defined in `ReadBytesExt`
/// for free.
impl<R: io::Read + ?Sized> ReadBytesExt for R {}
/// Extends `Write` with methods for writing numbers. (For `std::io`.)
///
/// Most of the methods defined here have an unconstrained type parameter that
/// must be explicitly instantiated. Typically, it is instantiated with either
/// the `BigEndian` or `LittleEndian` types defined in this crate.
///
/// # Examples
///
/// Write unsigned 16 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = vec![];
/// wtr.write_u16::<BigEndian>(517).unwrap();
/// wtr.write_u16::<BigEndian>(768).unwrap();
/// assert_eq!(wtr, vec![2, 5, 3, 0]);
/// ```
pub trait WriteBytesExt: io::Write {
/// Writes an unsigned 8 bit integer to the underlying writer.
///
/// Note that since this writes a single byte, no byte order conversions
/// are used. It is included for completeness.
#[inline]
fn write_u8(&mut self, n: u8) -> Result<()> {
self.write_all(&[n])
}
/// Writes a signed 8 bit integer to the underlying writer.
///
/// Note that since this writes a single byte, no byte order conversions
/// are used. It is included for completeness.
#[inline]
fn write_i8(&mut self, n: i8) -> Result<()> {
self.write_all(&[n as u8])
}
/// Writes an unsigned 16 bit integer to the underlying writer.
#[inline]
fn write_u16<T: ByteOrder>(&mut self, n: u16) -> Result<()> {
let mut buf = [0; 2];
T::write_u16(&mut buf, n);
self.write_all(&buf)
}
/// Writes a signed 16 bit integer to the underlying writer.
#[inline]
fn write_i16<T: ByteOrder>(&mut self, n: i16) -> Result<()> {
let mut buf = [0; 2];
T::write_i16(&mut buf, n);
self.write_all(&buf)
}
/// Writes an unsigned 32 bit integer to the underlying writer.
#[inline]
fn write_u32<T: ByteOrder>(&mut self, n: u32) -> Result<()> {
let mut buf = [0; 4];
T::write_u32(&mut buf, n);
self.write_all(&buf)
}
/// Writes a signed 32 bit integer to the underlying writer.
#[inline]
fn write_i32<T: ByteOrder>(&mut self, n: i32) -> Result<()> {
let mut buf = [0; 4];
T::write_i32(&mut buf, n);
self.write_all(&buf)
}
/// Writes an unsigned 64 bit integer to the underlying writer.
#[inline]
fn write_u64<T: ByteOrder>(&mut self, n: u64) -> Result<()> {
let mut buf = [0; 8];
T::write_u64(&mut buf, n);
self.write_all(&buf)
}
/// Writes a signed 64 bit integer to the underlying writer.
#[inline]
fn write_i64<T: ByteOrder>(&mut self, n: i64) -> Result<()> {
let mut buf = [0; 8];
T::write_i64(&mut buf, n);
self.write_all(&buf)
}
/// Writes an unsigned n-bytes integer to the underlying writer.
///
/// If the given integer is not representable in the given number of bytes,
/// this method panics. If `nbytes > 8`, this method panics.
#[inline]
fn write_uint<T: ByteOrder>(
&mut self,
n: u64,
nbytes: usize,
) -> Result<()> {
let mut buf = [0; 8];
T::write_uint(&mut buf, n, nbytes);
self.write_all(&buf[0..nbytes])
}
/// Writes a signed n-bytes integer to the underlying writer.
///
/// If the given integer is not representable in the given number of bytes,
/// this method panics. If `nbytes > 8`, this method panics.
#[inline]
fn write_int<T: ByteOrder>(
&mut self,
n: i64,
nbytes: usize,
) -> Result<()> {
let mut buf = [0; 8];
T::write_int(&mut buf, n, nbytes);
self.write_all(&buf[0..nbytes])
}
/// Writes a IEEE754 single-precision (4 bytes) floating point number to
/// the underlying writer.
#[inline]
fn write_f32<T: ByteOrder>(&mut self, n: f32) -> Result<()> {
let mut buf = [0; 4];
T::write_f32(&mut buf, n);
self.write_all(&buf)
}
/// Writes a IEEE754 double-precision (8 bytes) floating point number to
/// the underlying writer.
#[inline]
fn write_f64<T: ByteOrder>(&mut self, n: f64) -> Result<()> {
let mut buf = [0; 8];
T::write_f64(&mut buf, n);
self.write_all(&buf)
}
}
/// All types that implement `Write` get methods defined in `WriteBytesExt`
/// for free.
impl<W: io::Write + ?Sized> WriteBytesExt for W {}