1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
// riff-wave -- Basic support for reading and writing wave PCM files.
// Copyright (c) 2016 Kevin Brothaler and the riff-wave project authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// A copy of the License has been included in the root of the repository.
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::cmp;
use std::error;
use std::fmt;
use std::io;
use std::io::{Seek, SeekFrom, Write};
use std::result;

use byteorder::{LittleEndian, WriteBytesExt};

use super::PcmFormat;
use super::{FORMAT_UNCOMPRESSED_PCM, MAX_I24_VALUE, MIN_I24_VALUE};

// MARK: Error types

#[derive(Debug)]
pub enum WriteError {
    /// Wave files are limited to 4GB in size.
    ExceededMaxSize,
    /// An IO error occurred.
    Io(io::Error),
}

/// Represents a result when reading a wave file.
pub type WriteResult<T> = result::Result<T, WriteError>;

impl fmt::Display for WriteError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            WriteError::ExceededMaxSize => write!(f, "Exceeded max size of 4GiB"),
            WriteError::Io(ref err) => write!(f, "IO error: {}", err),
        }
    }
}

impl error::Error for WriteError {
    fn cause(&self) -> Option<&dyn error::Error> {
        match *self {
            WriteError::ExceededMaxSize => None,
            WriteError::Io(ref err) => Some(err),
        }
    }
}

impl From<io::Error> for WriteError {
    fn from(err: io::Error) -> WriteError {
        WriteError::Io(err)
    }
}

// MARK: Writing functions

trait WriteWaveExt: Write + Seek {
    fn write_standard_wave_header(&mut self, pcm_format: &PcmFormat) -> io::Result<()> {
        self.write_riff_wave_chunk_header()?;
        self.write_standard_fmt_subchunk(pcm_format)?;
        self.write_data_subchunk_header()?;

        Ok(())
    }

    fn write_riff_wave_chunk_header(&mut self) -> io::Result<()> {
        self.write_all(b"RIFF")?;                           // Identifier
        self.write_u32_l(36)?;                              // File size (header) minus eight bytes
        self.write_all(b"WAVE")?;                           // Identifier

        Ok(())
    }

    fn write_standard_fmt_subchunk(&mut self, pcm_format: &PcmFormat) -> io::Result<()> {
        let num_channels = pcm_format.num_channels;
        let sample_rate = pcm_format.sample_rate;
        let bits_per_sample = pcm_format.bits_per_sample;

        if num_channels == 0 {
            panic!("The number of channels should be greater than zero.");
        } else if sample_rate == 0 {
            panic!("The sample rate should be greater than zero.");            
        } else if bits_per_sample != 8 && bits_per_sample != 16 
               && bits_per_sample != 24 && bits_per_sample != 32 {
            panic!("The bits per sample needs to be either 8, 16, 24, or 32.");            
        }

        self.write_all(b"fmt ")?;                           // "fmt " chunk and size
        self.write_u32_l(16)?;                              // Subchunk size
        self.write_u16_l(FORMAT_UNCOMPRESSED_PCM)?;         // PCM Format
        self.write_u16_l(num_channels)?;                    // Number of channels
        self.write_u32_l(sample_rate)?;                     // Sample rate

        let bytes_per_sample = bits_per_sample / 8;
        let block_align = num_channels * bytes_per_sample;
        let byte_rate = block_align as u32 * sample_rate;

        self.write_u32_l(byte_rate)?;                       // Byte rate
        self.write_u16_l(block_align)?;                     // Block align
        self.write_u16_l(bits_per_sample)?;                 // Bits per sample

        Ok(())
    }

    fn write_data_subchunk_header(&mut self) -> io::Result<()> {
        self.write_all(b"data")?;                           // Start of "data" subchunk
        self.write_u32_l(0)?;                               // Size of data subchunk.

        Ok(())
    }

    fn write_u16_l(&mut self, n: u16) -> io::Result<()> {
        self.write_u16::<LittleEndian>(n)
    }

    fn write_u32_l(&mut self, n: u32) -> io::Result<()> {
        self.write_u32::<LittleEndian>(n)
    }
}

impl<T> WriteWaveExt for T where T: Seek + Write {}

/// Helper struct that takes ownership of a writer and can be used to write data
/// to a PCM wave file.
#[derive(Debug)]
pub struct WaveWriter<T>
where
    T: Seek + Write,
{
    ///  Represents the PCM format for this wave file.
    pub pcm_format: PcmFormat,

    // How many samples have been written.
    written_samples: u32,

    // The underlying writer that we'll use to read data.
    writer: T,
}

// TODO what should we do if an incorrect write_* method is called? Return the error in the result?
impl<T> WaveWriter<T>
where
    T: Seek + Write,
{
    /// Returns a new wave writer for the given writer.
    /// # Panics
    /// Panics if num_channels or sample_rate is zero, or if bits_per_sample
    /// doesn't match 8, 16, 24, or 32.
    pub fn new(
        num_channels: u16,
        sample_rate: u32,
        bits_per_sample: u16,
        mut writer: T,
    ) -> WriteResult<WaveWriter<T>> {
        let pcm_format = PcmFormat {
            num_channels: num_channels,
            sample_rate: sample_rate,
            bits_per_sample: bits_per_sample,
        };

        writer.write_standard_wave_header(&pcm_format)?;

        Ok(WaveWriter {
            pcm_format: pcm_format,
            written_samples: 0,
            writer: writer,
        })
    }

    /// Writes a single sample as an unsigned 8-bit value.
    pub fn write_sample_u8(&mut self, sample: u8) -> WriteResult<()> {
        self.write_sample(sample, |writer, sample| writer.write_u8(sample))
    }

    /// Writes a single sample as a signed 16-bit value.
    pub fn write_sample_i16(&mut self, sample: i16) -> WriteResult<()> {
        self.write_sample(sample, |writer, sample| {
            writer.write_i16::<LittleEndian>(sample)
        })
    }

    /// Writes a single sample as a signed 24-bit value. The value will be truncated
    /// to fit in a 24-bit value.
    pub fn write_sample_i24(&mut self, sample: i32) -> WriteResult<()> {
        self.write_sample(sample, |writer, sample| {
            writer.write_int::<LittleEndian>(clamp(sample, MIN_I24_VALUE, MAX_I24_VALUE) as i64, 3)
        })
    }

    /// Writes a single sample as a signed 32-bit value.
    pub fn write_sample_i32(&mut self, sample: i32) -> WriteResult<()> {
        self.write_sample(sample, |writer, sample| {
            writer.write_i32::<LittleEndian>(sample)
        })
    }

    fn write_sample<F, S>(&mut self, sample: S, write_data: F) -> WriteResult<()>
    where
        F: Fn(&mut T, S) -> io::Result<()>,
    {
        self.do_overflow_check_for_next_sample()?;
        write_data(&mut self.writer, sample)?;
        self.written_samples += 1;
        Ok(())
    }

    fn do_overflow_check_for_next_sample(&self) -> WriteResult<()> {
        let data_chunk_size = self.calculate_current_data_size();
        let riff_chunk_size = 36 + data_chunk_size;
        let file_size = 8 + riff_chunk_size;

        // The file size after we finish writing a new frame should not exceed
        // 4 GiB.

        let num_channels = self.pcm_format.num_channels as u32;
        let sample_size = self.calculate_sample_size_in_bytes();

        // This is slightly conservative, but most wave files we deal with will
        // probably be either 8-bit or 16-bit and mono or stereo, so we keep the
        // more expensive check for the minority of cases, even if there are
        // some combinations that don't need it.
        if num_channels <= 2 && sample_size <= 2 {
            // The remaining 4GiB space will evenly divide mono and stereo
            // frames for 8-bit and 16-bit files, so we don't need to guard
            // against incomplete frames.
            file_size.checked_add(sample_size).map_or(Err(WriteError::ExceededMaxSize), |_| Ok(()))
        } else {
            let remaining_channels = num_channels - self.written_samples % num_channels;
            let remaining_samples_for_frame = sample_size * remaining_channels;

            file_size.checked_add(remaining_samples_for_frame)
                .map_or(Err(WriteError::ExceededMaxSize), |_| Ok(()))
        }
    }

    fn calculate_current_data_size(&self) -> u32 {
        self.written_samples * self.calculate_sample_size_in_bytes()
    }

    fn calculate_sample_size_in_bytes(&self) -> u32 {
        self.pcm_format.bits_per_sample as u32 / 8
    }

    /// Updates the header at the beginning of the file with the new chunk sizes.
    pub fn sync_header(&mut self) -> io::Result<()> {
        let data_chunk_size = self.calculate_current_data_size();
        let riff_chunk_size = 36 + data_chunk_size;

        // File size minus eight bytes
        self.writer.seek(SeekFrom::Start(4))?;
        self.writer.write_u32_l(riff_chunk_size)?;

        // Data size minus eight bytes
        self.writer.seek(SeekFrom::Start(40))?;
        self.writer.write_u32_l(data_chunk_size)?;

        // Seek back to the end so we can continue writing
        self.writer.seek(SeekFrom::End(0))?;

        Ok(())
    }
}

impl<T> Drop for WaveWriter<T>
    where T: Seek + Write
{
    fn drop(&mut self) {
        // Make sure the header reflects the latest chunk sizes before we go away.
        let _ = self.sync_header();
    }
}

// Mark: Helper functions

fn clamp(n: i32, min: i32, max: i32) -> i32 {
    cmp::min(cmp::max(n, min), max)
}

// MARK: Tests

#[cfg(test)]
mod tests {
    use std::io::{Cursor, Write};

    use byteorder::{LittleEndian, WriteBytesExt};

    use super::super::WaveReader;
    use super::super::{MAX_I24_VALUE, MIN_I24_VALUE};
    use super::clamp;
    use super::{WaveWriter, WriteError, WriteResult};

    // Validation tests

    #[test]
    #[should_panic]
    fn test_validate_doesnt_accept_zero_channels() {
        let _ = WaveWriter::new(0, 44100, 16, Cursor::new(Vec::new()));
    }

    #[test]
    #[should_panic]
    fn test_validate_doesnt_accept_zero_sample_rate() {
        let _ = WaveWriter::new(1, 0, 16, Cursor::new(Vec::new()));
    }

    #[test]
    #[should_panic]
    fn test_validate_doesnt_accept_invalid_bitrate() {
        let _ = WaveWriter::new(1, 44100, 12, Cursor::new(Vec::new()));
    }

    #[test]
    fn test_validate_accepts_valid_combination() {
        let wave_writer = WaveWriter::new(1, 44100, 16, Cursor::new(Vec::new()));
        assert_matches!(Ok(_), wave_writer);
    }

    // Header validation tests

    #[test]
    fn test_header_is_acceptable() {
        let mut cursor = Cursor::new(Vec::new());
        {
            let _ = WaveWriter::new(1, 44100, 16, cursor.by_ref()).unwrap();
        }

        cursor.set_position(0);

        let wave_reader = WaveReader::new(cursor).unwrap();

        assert_eq!(1, wave_reader.pcm_format.num_channels);
        assert_eq!(44100, wave_reader.pcm_format.sample_rate);
        assert_eq!(16, wave_reader.pcm_format.bits_per_sample);
    }

    // Header sync & drop validation tests

    fn test_header_sync(explicit_sync: bool, write_count: u32) {
        let mut cursor = Cursor::new(Vec::new());
        {
            let mut wave_writer = WaveWriter::new(1, 44100, 16, cursor.by_ref()).unwrap();

            for i in 0..write_count {
                wave_writer.write_sample_i16(i as i16).unwrap();
            }

            if explicit_sync {
                wave_writer.sync_header().unwrap();
            }
        }

        cursor.set_position(0);

        let wave_reader = WaveReader::new(cursor).unwrap();
        let cursor = wave_reader.into_inner();
        let data = cursor.into_inner();

        assert_eq!(44 + write_count as usize * 2, data.len());
        // We're not currently surfacing the chunk/subchunk info in the reader
        // so just access the data directly.
        assert_eq!(get_little_endian_bytes(36 + write_count * 2 as u32), &data[4..8]);
        assert_eq!(get_little_endian_bytes(write_count * 2 as u32), &data[40..44]);
    }

    #[test]
    fn test_header_sync_when_no_data_written() {
        test_header_sync(true, 0);
    }

    #[test]
    fn test_header_sync_via_drop_when_no_data_written() {
        test_header_sync(false, 0);
    }

    #[test]
    fn test_header_sync_when_ten_samples_written() {
        test_header_sync(true, 10);
    }

    #[test]
    fn test_header_sync_via_drop_when_ten_samples_written() {
        test_header_sync(false, 10);
    }

    // Overflow tests

    #[test]
    fn test_clamp() {
        assert_eq!(-5, clamp(-10, -5, 5));
        assert_eq!(5, clamp(10, -5, 5));

        assert_eq!(MIN_I24_VALUE, clamp(i32::min_value(), MIN_I24_VALUE, MAX_I24_VALUE));
        assert_eq!(MAX_I24_VALUE, clamp(i32::max_value(), MIN_I24_VALUE, MAX_I24_VALUE));
    }

    #[test]
    fn test_24_bit_doesnt_panic_when_out_of_range() {
        let mut wave_writer = WaveWriter::new(1, 44100, 24, Cursor::new(Vec::new())).unwrap();

        wave_writer.write_sample_i24(i32::min_value()).unwrap();
        wave_writer.write_sample_i24(i32::max_value()).unwrap();
    }

    #[test]
    fn test_24_bit_accepts_range() {
        let mut cursor = Cursor::new(Vec::new());
        {
            let mut wave_writer = WaveWriter::new(1, 44100, 16, cursor.by_ref()).unwrap();

            wave_writer.write_sample_i24(i32::min_value()).unwrap();
            wave_writer.write_sample_i24(MIN_I24_VALUE).unwrap();
            wave_writer.write_sample_i24(MAX_I24_VALUE).unwrap();
            wave_writer.write_sample_i24(i32::max_value()).unwrap();
        }

        cursor.set_position(0);

        let mut wave_reader = WaveReader::new(cursor).unwrap();
        assert_eq!(MIN_I24_VALUE, wave_reader.read_sample_i24().unwrap());
        assert_eq!(MIN_I24_VALUE, wave_reader.read_sample_i24().unwrap());
        assert_eq!(MAX_I24_VALUE, wave_reader.read_sample_i24().unwrap());
        assert_eq!(MAX_I24_VALUE, wave_reader.read_sample_i24().unwrap());
    }

    #[test]
    fn test_overflow_8bit() {
        test_overflow(8, |wave_writer| wave_writer.write_sample_u8(5));
    }

    #[test]
    fn test_overflow_16bit() {
        test_overflow(16, |wave_writer| wave_writer.write_sample_i16(5));
    }

    #[test]
    fn test_overflow_24bit() {
        test_overflow(24, |wave_writer| wave_writer.write_sample_i24(5));
    }

    #[test]
    fn test_overflow_32bit() {
        test_overflow(32, |wave_writer| wave_writer.write_sample_i32(5));
    }

    fn test_overflow<F>(bits_per_sample: u16, write_sample: F)
    where
        F: Fn(&mut WaveWriter<Cursor<Vec<u8>>>) -> WriteResult<()>,
    {
        let mut wave_writer =
            WaveWriter::new(1, 44100, bits_per_sample, Cursor::new(Vec::new())).unwrap();

        // Make it believe we are close to overflow:
        wave_writer.written_samples = (u32::max_value() - 44) / (bits_per_sample as u32 / 8);

        // The next write should overflow
        assert_matches!(
            Err(WriteError::ExceededMaxSize),
            write_sample(&mut wave_writer)
        );
    }

    #[test]
    fn test_overflow_doesnt_let_us_start_an_incomplete_frame_8bit() {
        test_overflow_doesnt_let_us_start_an_incomplete_frame(5, 8, |wave_writer| {
            wave_writer.write_sample_u8(5)
        });
    }

    #[test]
    fn test_overflow_doesnt_let_us_start_an_incomplete_frame_16bit() {
        test_overflow_doesnt_let_us_start_an_incomplete_frame(6, 16, |wave_writer| {
            wave_writer.write_sample_i16(5)
        });
    }

    fn test_overflow_doesnt_let_us_start_an_incomplete_frame<F>(
        num_channels: u16,
        bits_per_sample: u16,
        write_sample: F,
    ) where
        F: Fn(&mut WaveWriter<Cursor<Vec<u8>>>) -> WriteResult<()>,
    {
        let mut wave_writer = WaveWriter::new(
            num_channels,
            44100,
            bits_per_sample,
            Cursor::new(Vec::new()),
        )
        .unwrap();

        // With this value, we should still be able to write one more 5-channel
        // frame, but should hit a failure when we start the second frame.

        wave_writer.written_samples = (u32::max_value() - 44) / (bits_per_sample as u32 / 8);
        // Make sure we have an incomplete frame at the end.
        assert!(wave_writer.written_samples % num_channels as u32 != 0);
        wave_writer.written_samples -= wave_writer.written_samples % num_channels as u32;
        // Make room for one full frame.
        wave_writer.written_samples -= num_channels as u32;

        // First frame should be OK.
        for _ in 0..num_channels {
            write_sample(&mut wave_writer).unwrap();
        }

        // Starting the next frame should overflow, even though we still have
        // room to write one more sample.
        assert_matches!(
            Err(WriteError::ExceededMaxSize),
            write_sample(&mut wave_writer)
        );
    }

    // Write validation tests

    #[test]
    fn test_writing_8bit() {
        test_writing(
            8,
            |wave_writer, x| wave_writer.write_sample_u8(x as u8),
            |wave_reader, x| wave_reader.read_sample_u8().unwrap() == x as u8,
        );
    }

    #[test]
    fn test_writing_16bit() {
        test_writing(
            16,
            |wave_writer, x| wave_writer.write_sample_i16(x as i16 * 100),
            |wave_reader, x| wave_reader.read_sample_i16().unwrap() == x as i16 * 100,
        );
    }

    #[test]
    fn test_writing_24bit() {
        test_writing(
            24,
            |wave_writer, x| wave_writer.write_sample_i24(x as i32 * 32767),
            |wave_reader, x| wave_reader.read_sample_i24().unwrap() == x as i32 * 32767,
        );
    }

    #[test]
    fn test_writing_32bit() {
        test_writing(
            32,
            |wave_writer, x| wave_writer.write_sample_i32(x as i32 * 8000000),
            |wave_reader, x| wave_reader.read_sample_i32().unwrap() == x as i32 * 8000000,
        );
    }

    fn test_writing<F, G>(bits_per_sample: u16, write_sample: F, read_and_check_equal: G)
    where
        F: Fn(&mut WaveWriter<&mut Cursor<Vec<u8>>>, i32) -> WriteResult<()>,
        G: Fn(&mut WaveReader<Cursor<Vec<u8>>>, i32) -> bool,
    {
        let data = Vec::new();
        let mut cursor = Cursor::new(data);
        {
            let mut wave_writer =
                WaveWriter::new(1, 44100, bits_per_sample, cursor.by_ref()).unwrap();

            for i in 0..256 {
                write_sample(&mut wave_writer, i).unwrap();
            }
        }

        cursor.set_position(0);

        let mut wave_reader = WaveReader::new(cursor).unwrap();

        for i in 0..256 {
            assert!(read_and_check_equal(&mut wave_reader, i));
        }

        let cursor = wave_reader.into_inner();
        let data = cursor.into_inner();

        let expected_data_size = 256 * bits_per_sample / 8;
        assert_eq!(44 + expected_data_size as usize, data.len());

        // We're not currently surfacing the chunk/subchunk info in the reader
        // so just access the data directly.
        assert_eq!(
            get_little_endian_bytes(36 + expected_data_size as u32),
            &data[4..8]
        );
        assert_eq!(
            get_little_endian_bytes(expected_data_size as u32),
            &data[40..44]
        );
    }

    fn get_little_endian_bytes(n: u32) -> [u8; 4] {
        let mut buf: [u8; 4] = [0; 4];
        {
            let mut cursor = Cursor::new(&mut buf[..]);
            cursor.write_u32::<LittleEndian>(n).unwrap();
        }
        buf
    }
}